Self-adjointness of deformed unbounded operators
نویسندگان
چکیده
منابع مشابه
On the Essential Self-Adjointness of Anti-Commutative Operators
In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.
متن کاملJ -self-adjointness of a Class of Dirac-type Operators
In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...
متن کاملSelf-adjointness of Dirac Operators via Hardy-dirac Inequalities
Distinguished selfadjoint extension of Dirac operators are constructed for a class of potentials including Coulombic ones up to the critical case, −|x|. The method uses Hardy-Dirac inequalities and quadratic form techniques.
متن کاملEssential self - adjointness
1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...
متن کاملApproximations of Strongly Continuous Families of Unbounded Self-Adjoint Operators
The problem of approximating the discrete spectra of families of self-adjoint operators that are merely strongly continuous is addressed. It is well-known that the spectrum need not vary continuously (as a set) under strong perturbations. However, it is shown that under an additional compactness assumption the spectrum does vary continuously, and a family of symmetric finite-dimensional approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2015
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4929662